## edexcel 쁯

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MAO)<br>Paper 3H

Pearson Edexcel Level1/Level 2 Certificate Mathematics A (KMAO) Paper 3H

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042083
All the material in this publication is copyright
© Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of $M$ marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- awrt -answer which rounds to


## - No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the $M$ marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

| Apart from questions 13a, 17 and 18 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| incorrect method, should be taken to imply a correct method |  |  |  |  |  |  |  |


| 2 | $\begin{aligned} & (360-76-82-30) \div 2=86 \text { or } \\ & 225.5 \div 82(=2.75) \text { or } \\ & 225.5 \div 82 \times a \text { where } a \neq 86 \text { or } \\ & 225.5 \div 82 \times(360-76-82-30) \text { oe }(=473) \\ & 225.5 \div 82 \times \text { "86" or } \\ & 225.5 \div 22.7 . . \times 23.8 \ldots \text { or } \\ & \text { digits } 236 \ldots \text { or } \\ & \text { " } 473 \text { " } \div 2 \end{aligned}$ | 236.5 | 3 | M1 Accept digits $2255(000 \ldots$...) in place of 225.5 in both method marks <br> M1(dep) for complete method NB: 82 and 86 may be converted to percentage of $\mathbf{3 6 0}$ and then these percentages used $\frac{82}{360}=22.7 . . \% \text { or } 23 \% ; \quad \frac{86}{360}=23.8 . . \% \text { or } 24 \%$ <br> A1 oe accept 236.5 million or 236500000 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total 3 marks |



| 4 (a) | $4 \times 13(=52)$ or $\frac{w+x+y+z}{4}=13$ or <br> $4 \times 13-33$ |  | 2 | M1 |
| ---: | :--- | :---: | :---: | :--- |
| (b) | $z-w=10$ or $w=9$ or <br> $w=" 19 "-10$ or <br> $x+y=33-9=24$ | 19 |  |  |


| 5 (a) | $\begin{aligned} & 15960 \div 5.7 \times 4.6 \text { or } \\ & 15960 \div 5.7(=2800) \end{aligned}$ |  | 2 | M1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  | 12880 |  | A1 |  |  |
| (b) | $15960 \times \frac{7.5}{100} \text { oe }(=1197)$ |  | 3 | M1 | $\begin{aligned} & \text { M2 for } \\ & 0.925 \times 5.7(=5.27(25)) \\ & \text { AND } \frac{5.27}{57} \times 15960 \end{aligned}$ | $\begin{aligned} & \text { M2 for } \\ & 15960 \times \frac{92.5}{100} \text { oe } \end{aligned}$ |
|  | 15960 - "1197" |  |  | M1 (dep) | $\overline{5.7}$ |  |
|  |  | 14763 |  | A1 |  |  |
|  | NB: Accept 12880 or ans to (a) in place of 15960 for both method marks |  |  |  |  |  |
|  |  |  |  |  |  | Total 5 marks |


| $\mathbf{6}$ (a) | $1.5 \times \pi$ or $2 \times \pi \times(1.5 \div 2)$ |  | 2 | M1 |
| ---: | :--- | :---: | :---: | :--- |
| (b) | $1000 \div$ "4.71" | 212 | 2 |  |
| A1 4.71-4.72 |  |  |  |  |
|  |  | M1 ft from (a) <br> (accept use of rounded answer from (a) for method mark only) <br> A1 ft from (a) provided working is shown (must round down <br> to integer value) |  |  |



| $\mathbf{8}$ | $\left(A B^{2}=\right) 6.5^{2}-6.3^{2}(=2.56)$ |  | 3 | M1 | Alternative method : <br> M1 for finding a correct angle $(A=75.7 \ldots ; C=14.2 \ldots)$ <br> AND a correct trig statement with a correct angle eg. |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $(A B=) \sqrt{6.5^{2}-6.3^{2}}$ or <br> $\sqrt{" 2.56 "}$ |  |  | M1 dep | $\sin 14.2=\frac{A B}{6.5}$ <br> M1 for making AB the subject eg. $A B=6.5 \sin 14.2$ |
|  |  | 1.6 |  | A1 | NB: 1.6 as a rounded answer eg. from1.594... gains A0 |


| 9 (a) |  | $20 y^{3}$ | 2 | B2 (B1 for $n y^{3}, n \neq 20$ or $20 y^{m} m \neq 3$ ) |
| :---: | :---: | :---: | :---: | :---: |
| (b) | ) | $\frac{3 e}{5 f^{2}}$ | 2 | B2 $\frac{3 e}{5 f^{2}}$ or $\frac{3}{5} e f^{-2}$ or $0.6 \frac{e}{f^{2}}$ or $0.6 e f^{-2}$ (B1 for $k \frac{e}{f^{2}}$ with $k \neq 0.6$ oe or $\frac{3 e f}{5 f^{3}}$ or $\frac{3 e^{2}}{5 e f^{2}}$ ) |
| (c) |  |  | 2 | M1 for $(a p+b q)(c p+d q)$ with $a c=6$ and $b d=-6$ (ie. the coefficients of $p$ multiply to give 6 and the coefficients of $q$ multiply to give -6 ) |
|  |  | $(3 p+2 q)(2 p-3 q)$ |  | A1 oe |
| (d) |  | $x^{\text {yz }}$ | 1 | B1 |
|  |  |  |  | Total 7 marks |


| 10 (a) | $\begin{aligned} & 2.57 \times 10^{10}+6.01 \times 10^{10}+5.80 \times 10^{10}+ \\ & 1.91 \times 10^{10}+8.21 \times 10^{10} \text { or } \\ & 2.57+6.01+5.8+1.91+8.21 \text { or } \\ & 245000000000 \text { oe or } \\ & \text { digits } 245 \end{aligned}$ |  | 2 | M1 for clear intention to add all surface areas |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $2.45 \times 10^{11}$ |  | A1 cao |
| (b) | $\left(1.22 \times 10^{13}\right) \div\left(7.45 \times 10^{9}\right)$ or 1637(.58...) or digits 1637(58...) |  | 2 | M1 condone missing brackets |
|  |  | 1640 |  | A1 accept $1637-1640$ (may be in standard form) |
|  |  |  |  | Total 4 marks |


| 11 | NB: If it is clear that the surface area is being calculated then no marks can be awarded |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2} \times(12+22) \times(20-12) \text { oe }(=136)$ |  | 5 | M1 |
|  | $12 \times 12(=144)$ |  |  | M1 |
|  | "136"+"144" $=280$ |  |  | M1 dep on at least one previous M1 scored |
|  | $80 \times$ " 280 " |  |  | M1 dep on previous M1 |
|  |  | 22400 |  | A1 |
|  | Alternative $\frac{1}{2} \times(12+22) \times(20-12) \text { oe }(=136)$ |  |  | M1 (may be seen within a volume calculation) |
|  | $12 \times 12(=144)$ |  |  | M1(may be seen within a volume calculation) |
|  | $\begin{aligned} & " 136 " \times 80=10880 \text { or } \\ & " 144 " \times 80=11520 \end{aligned}$ |  |  | M1 dep on at least one previous M1 scored |
|  | "10880" + "11520" |  |  | M1 dep on previous M1 |
|  |  | 22400 |  | A1 |
|  | Special Case : Use of 10 cm for height of trapezium AND 10 cm for $A F$ |  |  | B3 for answer of 23200 |
|  |  |  |  | If not B3 then B2 for $290 \times 80$ or $80 \times\left(10 \times 12+\frac{1}{2} \times(22+12) \times 10\right)$ |
|  |  |  |  | If not B2 then B1 for $\begin{aligned} & 10 \times 12+\frac{1}{2} \times(22+12) \times 10(=290) \text { or } \\ & 10 \times 12 \times 80 \text { and } \frac{1}{2} \times(22+12) \times 10 \times 80 \end{aligned}$ |
|  |  |  |  | Total 5 marks |


| $\mathbf{1 2}$ | $20 \times 151(=3020)$ or $12 \times 148=(1776)$ or <br> 4796 <br> $(" 3020 "+" 1776 ") \div(12+20)$ or <br> $(" 3020 "+" 1776 ") \div 32$ |  | M1 |  |
| :--- | :--- | ---: | :--- | :--- |
|  |  | 149.875 |  | M1 dep <br> A1 for 149.875 rounded or truncated to 1 or more decimal places <br> Accept 150 if M2 awarded |
|  |  |  |  | Total 3 marks |






| 17 (a) |  | -1 or 2 | 1 | B1 for -1 or for 2 or both |
| :---: | :---: | :---: | :---: | :---: |
| (b) |  | $\frac{5}{2} \text { oe }$ | 1 | B1 |
| (c) | $\begin{aligned} & \frac{3(x-2)}{(x+1)(x-2)}+\frac{x+1}{(x+1)(x-2)} \text { or } \\ & \frac{3(x-2)(x+1)}{(x+1)}+\frac{(x-2)(x+1)}{(x-2)} \text { or } \\ & 3(x-2)+x+1 \end{aligned}$ |  | 3 | M1 for correct method to clear fractions |
|  | $\begin{aligned} & 3(x-2)+x+1=0 \text { oe or } \\ & 4 x-5=0 \end{aligned}$ |  |  | M1 for clearing fractions and obtaining a correct equation |
|  |  | $\frac{5}{4}$ oe |  | A1 ( depending on at least M1) |
|  |  |  |  | Total 5 marks |


| 18 | 41.5 or 42.5 or 24.5 or 23.5 or 14.5 or 13.5 |  | 3 | B1 |
| :---: | :---: | :---: | :---: | :---: |
|  | $(y=) \frac{2 \times 41.5}{24.5-13.5}$ |  |  | M1 |
|  |  | 7.5 |  | A1 accept $\frac{83}{11}$ or 7.55 or $7 . \dot{5} \dot{4}$ ( depending on M1) <br> NB: Answer must come from correct working |
|  |  |  |  | Total 3 marks |


| 19 | Any 2 of$\begin{aligned} & 50 \div 20(=2.5), 90 \div 30(=3) \\ & 120 \div 50(=2.4), 160 \div 200(=0.8) \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | 3 | M1 for any two correct fd calculations can be implied by any two correct frequency densities or any two correct bars |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Any 3 of 2.5, 3, 2.4, 0.8 |  |  |  |  |  |  |  |  |  |  |  | A1 for any 3 FDs correct (can be implied by at least 3 correct bars) |
|  |  |  |  |  |  |  |  |  | Correct histogram |  |  |  | A1 for a fully correct histogram <br> SC: B2 All four bars of correct width with heights in the correct ratio (B1 for 3 bars of correct width with heights in the correct ratio) |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Total 3 marks |


| 20 (a) | $\frac{1}{6} \times \frac{1}{6}$ | 2 | M1 |
| :--- | :--- | :--- | :--- | :--- |
| (b) | $\frac{1}{36} \times \frac{5}{6} \times \frac{1}{6}$ oe $\left(=\frac{25}{216}\right)$ |  | A1 or 0.0277... rounded or truncated to 2 or <br> more sig figs |
| $3 \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$ oe |  | M1 |  |


| 21 | Angle $C B D=32^{\circ}$ or <br> angle $A B C=90^{\circ}$ or <br> angle $D B O=90^{\circ}$ or <br> angle $O B A=32^{\circ}$ or <br> angle $B O D=2 \times 32(=64)$ <br> (where $O$ is the centre of the circle) |  | M1 angle must be clearly identifed either on <br> diagram or in working |  |
| :--- | :--- | :---: | :---: | :--- |
| eg <br> (Angle $B D C=) ~$ <br> ( $80^{\circ}-32^{\circ}-32^{\circ}-90^{\circ}$ | 3 |  | M1 for a complete method |  |
|  |  | 26 | A1 | Total 3 marks |


| 22 | $\begin{aligned} & A=K T^{2} \text { and } A=k r^{3} \text { or } \\ & T^{2}=\frac{k}{K} r^{3} \text { or } T^{2}=p r^{3} \\ & r^{3}=\frac{K}{k} T^{2} \text { or } r^{3}=q T^{2} \end{aligned}$ |  | 4 | M1 condone the same constant used in both equations <br> NB: Values may be substituted in place of the variables |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 47^{2}=\frac{k}{K} 0.25^{3} \text { or } 47^{2}=m 0.25^{3} \text { or } \\ & \frac{47^{2}}{0.25^{3}}(=141376) \text { or } \\ & \frac{0.25^{3}}{47^{2}}\left(=\frac{1}{141376}=7.07(3 \ldots) \times 10^{-6}\right) \end{aligned}$ |  |  | M1 <br> NB: 2209 may be seen in place of $\mathbf{4 7}^{\mathbf{2}}$ <br> $\frac{1}{64}$ or 0.015625 may be seen in place of $0.25^{3}$ |
|  | $\begin{aligned} & \left(r^{3}=\right) \frac{0.25^{3}}{47^{2}} \times 365^{2} \text { or } \\ & 365^{2} \div 141376 \text { or } \\ & 365^{2} \times 7.07(3 \ldots) \times 10^{-6} \text { or } \\ & 0.942 \ldots \end{aligned}$ |  |  | M1 |
|  |  | 0.980 |  | A1 awrt 0.980 accept 0.98 |
|  |  |  |  | Total 4 marks |


| 23 | Let $O$ be the centre of the square. $\left(A C^{2}\right)=10^{2}+10^{2}(=200)$ or ( $A C=$ ) $\sqrt{200}$ oe or ( $A C=$ ) 14.1(4...) |  | 4 | M1 or $2 A O^{2}=10^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & (A O=) \frac{1}{2} \sqrt{200} \text { oe or } \\ & (A O)=7.07(1 \ldots) \text { or } \\ & (A O)=7.05 \end{aligned}$ |  |  | M1 |
|  | $\left(V O^{2}=\right) 12^{2}-\left(\frac{1}{2} \sqrt{200}\right)^{2} \text { oe }(=94) \mathbf{O R}$ <br> Angle $V A C$ is $\cos ^{-1}\left(\frac{7.07}{12}\right)=53.896^{\circ}$ AND $12 \sin 53.896$ (= 9.695...) |  |  | M1 (dep on both previous method marks) for a fully correct method (condone missing brackets) |
|  |  | 9.70 |  | A1 awrt 9.70 accept 9.7 |
|  | Alternative method Let $M$ be the midpoint of a side of the square $\begin{aligned} & V M^{2}=12^{2}-5^{2}(=119) \text { or } \\ & V M=\sqrt{119} \quad(=10.9(\ldots) \end{aligned}$ |  |  | M2 but it must be explicitly clear that it is $V M$ being calculated |
|  | $\begin{aligned} & V O^{2}=119-5^{2}(=94) \text { or } \\ & V O^{2}=10.9^{2}-5^{2} \mathrm{oe} \end{aligned}$ |  |  | M1 |
|  |  | 9.70 |  | A1 awrt 9.70 accept 9.7 |
|  |  |  |  | Total 4 marks |


| 24 (a) | $\begin{aligned} & \overrightarrow{P Q}=6 \mathbf{b}-6 \mathbf{a} \text { or } \\ & \overrightarrow{Q P}=6 \mathbf{a}-6 \mathbf{b} \text { or } \\ & (\overrightarrow{O X})=\overrightarrow{O P}+\overrightarrow{P X} \text { oe or } \\ & (\overrightarrow{O X})=\overrightarrow{O Q}+\overrightarrow{Q X} \text { oe or } \\ & 6 \mathbf{a}+\frac{1}{2}(6 \mathbf{b}-6 \mathbf{a}) \text { or } \\ & 6 \mathbf{b}+\frac{1}{2}(6 \mathbf{a}-6 \mathbf{b}) \end{aligned}$ |  | 2 | M1 <br> NB: $\overrightarrow{O X}$ may be partially in terms of $\mathbf{a}$ and/or $\mathbf{b}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $3 \mathbf{a}+3 \mathrm{~b}$ |  | A1 or 3(a + b) |
| (b) | eg. $\begin{aligned} & (\overrightarrow{Q Y}=) \overrightarrow{Q O}+\frac{2}{3} \overrightarrow{O X} \quad \text { or } \\ & (\overrightarrow{Q Y}=)-6 \mathbf{b}+\frac{2}{3}(3 \mathbf{a}+3 \mathbf{b}) \end{aligned}$ |  | 2 | M1 for a complete method ft from (a) |
|  |  | $\begin{gathered} 2 \mathbf{a}-4 \mathbf{b} \text { or } \\ 2(\mathbf{a}-2 \mathbf{b}) \\ \hline \end{gathered}$ |  | A1ft from (a) |
|  |  |  |  | Total 4 marks |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

